

NERC/DTI Ocean Margins Thematic Programme

iSIMM (integrated Seismic Imaging & Modelling of Margins)

Pls - Nick Kusznir & Bob White - Liverpool University, Cambridge University Co-Pls - Phil Christie & Alan Roberts - Schlumberger Cambridge Research, Badley Geoscience

iSIMM Team Members

Cambridge - Roman Spitzer, Zoë Lunnon, Craig Parkin, Alan W. Roberts, Lindsey Smith, Jennifer Eccles

Liverpool - Dave Healy, Neil Hurst, Vijay Tymms, Rosie Fletcher, Alex Chappell

Industry Partners

A Kinematic Fluid-flow Model of Sea-floor **Spreading Initiation and Rifted Continental Margin Formation**

Nick Kusznir* & the iSIMM Team

Department of Earth & Ocean Sciences, University of Liverpool, Liverpool, UK Email: n.kusznir@liverpool.ac.uk

Rifted Continental Margin Formation

Is the process the same as that which forms intra-continental rift basins?

•Do we just stretch the continental lithosphere by infinity to form a rifted margin?

- •Recent discoveries at rifted margins •Depth Dependent Stretching •Mantle Exhumation

•These cannot be explained by existing rift basin formation models

•New rifted margin formation model is needed

New Model of Rifted Margin Formation

Assume dominant process for thinning continental margin lithosphere leading to breakup is -

•Upwelling & divergent flow within continental lithosphere & asthenosphere

•Not depth-uniform intra-continental extension

Model sea-floor spreading initiation

Modelling the establishment of divergent flow-fields leading to breakup

Corner-flow model

- Isoviscous stream-function solution (Batchelor 1967)
- •Kinematic define divergent & upwelling velocities
 - •Define V_x (divergent half-rate velocity)

-100.00-

-500.00

• Define V_z (upwelling velocity)

Modelling the establishment of divergent flow-fields leading to breakup

Modelling Rifted Margin Formation

Time Evolution

 $V_x = 1 \text{ cm/yr}, V_z/V_x = 1$

Modelling Volcanic Margin Formation

Modelling Non-volcanic Margin Formation

Modelling Margin Formation

New model predicts

- •Depth dependent stretching
- •Mantle exhumation
- •Bathymetry and subsidence history
- •Heat flow history
- •Gravity Anomalies

200

Distance (km)

300

400

500

100

0

SfMargin - Modelling Margin Formation

🌠 Sf Margin XL				
Calculate			×	
Calculate SffMarginXL Main sea-floor spreading Main sea-floor spreading 10 Total RunTime (Ma) 1 Vx (cm/yr) 1.5 Vz (cm/yr) I.5 Vz (cm/yr) I.5 Vz (cm/yr) Lithosphere extension (km) Pre-breakup extension (km)	Spatial Resolution High (1 km) Medium (5 km) Low (10 km) Time Step Resolution Time Step Resolution Time Step (1,000 yrs) Time Step (10,000 yrs) Model Width 500 km 1000 km 2500 km 5000 km Off V5.3 - 24/08/2004	Gravity Anomaly Off Off On Q Regional gravity (mgal) Sediment Loading Off Off Off Off Off Off Off Off Off On On Oceanic crust O O O O O O O O O O O O O O O O O	Plot Plot SflMarginX Calibration Bathymetry/Topography	Model Predictions Lithosphere X section Subsidence Thinning Factors Gravity Components
300 Pure shear width (km)	Copyright NJ Kusznir	Exit	Gravity Anomaly	Heat Flow
				Model Input
			[Exit	SFS Velocity History

Total Gravity Anomaly (FAG-Ocean/Bouguer-Land)

SfMargin - Modelling Margin Formation

Workflow for Industry Applications

 Invert observed bathymetry & gravity data to give margin deformation kinematics

- •Use model to predict -
 - •margin crustal structure
 - •lithosphere temperature
 - •heat flow
 - subsidence history

Inverse Methods Synthetic Data

Forward model input parameters

- Vx = 2cm 1
- Vz = 3 cm/yr
- $\beta = 3$ ٠

Grid search inversion using predicted thinning factor, bathymetry and gravity

Successful recovery of input parameters with zero least squares misfit (L2 Norm)

Misfit as a function of Vx, Vz and Beta using Gravity data

Inverse Methods Goban Spur

Grid search inversion – minimum misfit • $V_z / V_x = 1.25$ • $\beta = 1.5$

Comparison of best fit model prediction with observations

Breakup Initiation & Pre-Breakup Basin Formation

- •Application to basins formed during sea-floor spreading initiation or failed breakup
- •Model upward propagation of upwelling divergent flow field within continental lithosphere & asthenosphere

Examples

•Woodlark Basin, Nam Con Son Basin, Faroes-Shetland Basin

thermal subsidence

(b = 5.0)

5

1

b

faulting

(b = 1.15)

Woodlark Basin

- •Young ocean basin initiated ~ 8 Ma
- •3000 m subsidence in continent ahead of propagating tip
- •Little continental upper-crustal extension

SfMargin Applied to Pre-breakup Basin Formation

- •No stretching of the upper crust
- •Large thinning of lithospheric mantle and lower crust

•Broad syn-breakup sag basin •Large post-breakup subsidence

Post-breakup

Thinning Factor (1-1/b)

iSIMM Posters -Geodynamic Modelling

David Healy - Breakup Kinematics from Inversion of Bathymetry & Gravity Data

Vijay Tymms - Effects of Temperature Dependent Rheology on **Continental Breakup & Margin Formation**

Neil Hurst – Thinning, Subsidence and Plume Uplift on the Faroes Margin from Flexural Backstripping & Gravity Inversion

